Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes.
نویسندگان
چکیده
To realize the immense potential of large-scale genomic sequencing after the completion of the second human genome (Venter's), the costs for the complete sequencing of additional genomes must be dramatically reduced. Among the technologies being developed to reduce sequencing costs, microchip electrophoresis is the only new technology ready to produce the long reads most suitable for the de novo sequencing and assembly of large and complex genomes. Compared with the current paradigm of capillary electrophoresis, microchip systems promise to reduce sequencing costs dramatically by increasing throughput, reducing reagent consumption, and integrating the many steps of the sequencing pipeline onto a single platform. Although capillary-based systems require approximately 70 min to deliver approximately 650 bases of contiguous sequence, we report sequencing up to 600 bases in just 6.5 min by microchip electrophoresis with a unique polymer matrix/adsorbed polymer wall coating combination. This represents a two-thirds reduction in sequencing time over any previously published chip sequencing result, with comparable read length and sequence quality. We hypothesize that these ultrafast long reads on chips can be achieved because the combined polymer system engenders a recently discovered "hybrid" mechanism of DNA electromigration, in which DNA molecules alternate rapidly between repeating through the intact polymer network and disrupting network entanglements to drag polymers through the solution, similar to dsDNA dynamics we observe in single-molecule DNA imaging studies. Most importantly, these results reveal the surprisingly powerful ability of microchip electrophoresis to provide ultrafast Sanger sequencing, which will translate to increased system throughput and reduced costs.
منابع مشابه
Optimization, Dynamics and Stability of Non-Linear Separation Processes
In this thesis we develop a non convex non-linear programming problem that determines the minimum run time of a rapid, gel-free DNA separation technique called micelle end-labeled free solution electrophoresis (ELFSE). Micelle ELFSE is typically performed in capillary electrophoresis where the capillary length, electric field strength, and micelle drag tag size are the primary tuning variables....
متن کاملDNA sequencing by hybridization to microchip octa-and decanucleotides extended by stacked pentanucleotides.
The efficiency of sequencing by hybridization to an oligonucleotide microchip grows with an increase in the number and in the length of the oligonucleotides; however, such increases raise enormously the complexity of the microchip and decrease the accuracy of hybridization. We have been developing the technique of contiguous stacking hybridization (CSH) to circumvent these shortcomings. Stackin...
متن کاملSeparation of DNA fragments for fast diagnosis by microchip electrophoresis using programmed field strength gradient.
We evaluated a novel strategy for fast diagnosis by microchip electrophoresis (ME), using programmed field strength gradients (PFSG) in a conventional glass double-T microfluidic chip. The ME-PFSG allows for the ultrafast separation and enhanced resolving power for target DNA fragments. These results are based on electric field strength gradients (FSG) that use an ME separation step in a sievin...
متن کاملA phylogeny analysis on six mullet species (Teleosti: Mugillidae) using PCR-sequencing method
In this study, genetic differences and phylogenic relationships among six Mugilidae species (Mugil cephalus, M. capito, Liza subviridis, L. saliens, L. aurata, Valamugil buchanani) were determined using PCR-sequencing. M. cephalus, L. subviridis, and V. buchanani from the Persian Gulf and Oman Sea, and L. aurata and L. saliens from the Caspian Sea were col-lected. Samples of an imported, Egypt...
متن کاملSparsely cross-linked "nanogel" matrixes as fluid, mechanically stabilized polymer networks for high-throughput microchannel DNA sequencing.
We have developed sparsely cross-linked "nanogels", subcolloidal polymer structures composed of covalently linked, linear polyacrylamide chains, as novel replaceable DNA sequencing matrixes for capillary and microchip electrophoresis. Nanogels were synthesized via inverse emulsion (water-in-oil) copolymerization of acrylamide and a low percentage (approximately 10(-4) mol %) of N,N-methylene bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 2 شماره
صفحات -
تاریخ انتشار 2008